« Section 34: Problem 4 Solution

Section 34: Problem 6 Solution »

Section 34: Problem 5 Solution

Working problems is a crucial part of learning mathematics. No one can learn topology merely by poring over the definitions, theorems, and examples that are worked out in the text. One must work part of it out for oneself. To provide that opportunity is the purpose of the exercises.
James R. Munkres
If is locally compact and Hausdorff then is compact and Hausdorff. is metrizable iff it is second-countable. So, if is metrizable then is second-countable (note that being metrizable is a stronger condition than being metrizable: the discrete uncountable topology is an example, this is why it did not work in the previous exercise). If is second-countable then it is metrizable (see the previous exercise), but we need to check whether is metrizable. For this we need only to check whether it is second-countable. A countable basis for the topology of will do for as well. We only need to find a countable basis at . Take an open neighborhood where is compact in . is compact in iff it is closed in . Therefore, isopen in and must contain some basis neighborhoods . But we do not know whether is compact for any of these basis sets, therefore, we cannot guarantee that is open in for some . At the same time, we may instead build a countable family of compact sets such that every compact set is contained in a set from the family. We use the fact that is compact and the space is Hausdorff and locally compact. Consider the countable family of all basis open sets such that their closures are compact. Since the space is Hausdorff and locally compact, every point has a neighborhood in (Theorem 29.2). Therefore, covers and some its finite subset covers as well. The corresponding finite union of closures is compact (and closed) and contains . Therefore, we may take as basis neighborhoods of the complements of all finite union of compact closures of basis sets of . Something like that.Summary of 4 and 5: a one-point compactification of a locally compact Hausdorff space is metrizable iff is second-countable.