« Section 33: Problem 8 Solution

Section 33: Problem 10 Solution »

Section 33: Problem 9 Solution

Working problems is a crucial part of learning mathematics. No one can learn topology merely by poring over the definitions, theorems, and examples that are worked out in the text. One must work part of it out for oneself. To provide that opportunity is the purpose of the exercises.
James R. Munkres
It is sufficient to show that can be separated by a continuous function from a closed set that does not contain it. There is a neighborhood that does not intersect . Consider a linear transformation . We have shown back in the exercises of Section 19 that the linear transformation is a homeomorphism in both the product and box topology on . It seems a more general result is true: a product of continuous functions is continuous (so, that the product of homeomorphisms is a homeomorphism). If , is open in the box topology, then there is a basis neighborhood and iff for all : iff for all : . Therefore, for all which is open in the box topology if all are continuous, . Anyway, it is true for the linear transformation, and if could separate from by a continuous function , then would separate and . Note, that is closed and does not have any points in for if it had some than would have a point in . Now, since is completely separable (as a metric space), there is a continuous function that separates and (remember, that is not open in the uniform metric: exercise 6 of Section 20). Now, is continous in the finer box topology as well, and separates from .