Section 30: Problem 16 Solution
Working problems is a crucial part of learning mathematics. No one can learn topology merely by poring over the definitions, theorems, and examples that are worked out in the text. One must work part of it out for oneself. To provide that opportunity is the purpose of the exercises.
James R. Munkres
(a) The idea (similar to exercise 15): any open set is the product such that only finitely many open sets are not equal spaces. We can always separate the indexes of these spaces by some rational points. So let’s take all finite subsets of rationals in
containing 0 and 1 (countably many), each such a subset generates a finite number of half-open intervals of the form [), and then take products of rational points such that they are the same across each interval (countably many).(b) Define
as in the hint for a fixed interval. Note that all
are different (indeed, for
:
must have a dense point but lies within
only). Therefore,
is an injection and
.