« Section 30: The Countability Axioms

Section 30: Problem 2 Solution »

Section 30: Problem 1 Solution

Working problems is a crucial part of learning mathematics. No one can learn topology merely by poring over the definitions, theorems, and examples that are worked out in the text. One must work part of it out for oneself. To provide that opportunity is the purpose of the exercises.
James R. Munkres
(a) Let be a countable basis at . Then for each there is a neighborhood of such that does not contain . Therefore, there is that does not contain . Thus, .(b) Given any and there must be a neighborhood of that does not contain , therefore, the space is a -space and every one-point set is closed. We can start with some first-countable -space. By (a), every one-point set in such a space will be a set. Then, if we take a finer topology, it will still have the property, however, we may loose the first-countability if the space is large enough. For example, if we take then it is a metric space in the product topology. Therefore, every one-point set is the intersection of the countable collection of balls of radius centered at the point. Now, if we switch to the box topology, then it seems not to satisfy the first-countability axiom (take a countable collection of neighborhoods of a point and construct a neighborhood by taking the product of open proper subsets of ).Also, another example would be any countable -space which is not first-countable. Such a space will also be separable and Lindelöf but not second-countable. One example of such a space I found by solving Exercise 17.