« Section 35*: Problem 8 Solution

Section 35*: Problem 9 Solution

Working problems is a crucial part of learning mathematics. No one can learn topology merely by poring over the definitions, theorems, and examples that are worked out in the text. One must work part of it out for oneself. To provide that opportunity is the purpose of the exercises.
James R. Munkres
(a) Let be a collection of open subsets of . Then for each , is open in if there are finitely many open sets, and is open in as well. Now we need to show that is a (closed) subspace of . From the definition of the coherent topology on it follows that the topology on is finer than the subspace topology on . We need to show that if is open in then there is some set such that and is open in for every . is a subspace of for every . For let be a set open in such that . Note that for , and for , . Let . Then, for , is open in . For , is open in . Therefore, the subspace topology is finer than the topology on , and, overall, we have that the topologies are equal. To show that is a closed subspace of we can take any point and construct its neighborhood in disjoint from by taking the union of for all .(b) In the past we had the following fact: if a function is continuous on every space in a collection of subspaces covering the space and either all subspaces in the collection are open or all subspaces are closed and the collection is finite, then the function is continuous on the whole space. Here we have either the infinite union of closed subspaces or the infinite union of open subspaces union one closed subspace . If we knew that where is open in and there is some such that then we could apply the result stated above. However, it might be that every neighborhood of some point in intersects all spaces . For example, suppose and is open in iff for every all also in . Note that every is closed in . Then is but there is no open set in such that it is contained in any . So we show the result directly.Let be open in . Then for every , which is open in . Therefore, is open in .(c) Let and be closed disjoint subsets of . Let (it is a closed subspace of ) and be defined on such that and . We assume that . Note that both and are closed and open in and is continuous. For every , given a continuous function such that and , we extend it to a continuous function which satisfies the same property: and . We cannot directly apply the Tietze Extension Theorem because may be not normal. However, is normal. So we can extend to a continuous function as follows: first, we say that and , the function is still continuous ( and are closed in , hence, their intersection with is closed in and the continuity follows by the pasting lemma of Section 18), then, we extend it from the closed subset onto . Now, we define to be equal to on , on and on (it is still continuous by the pasting lemma). For every there is the minimal such that . We define . Note that is not defined for and agrees with for . For we define and for we define . Note, again, that this definition agrees with all . This implies that which is continuous, and by (b), is continuous. Since and , separates and . Hence, is normal.