« Section 35*: Problem 7 Solution

Section 35*: Problem 9 Solution »

Section 35*: Problem 8 Solution

Working problems is a crucial part of learning mathematics. No one can learn topology merely by poring over the definitions, theorems, and examples that are worked out in the text. One must work part of it out for oneself. To provide that opportunity is the purpose of the exercises.
James R. Munkres
One direction: 6(a). The other direction: if a normal space is an absolute retract then it has the universal extension property. The idea, as I understand, is as follows: we consider a continuous function from a closed subspace of to ; we know that whenever is homeomorphic to a closed subspace of a normal space, the subspace is a retract, i.e. there exists a continuous map from the space onto the subspace that preserves all points of the subspace; but we need a continuous function from to that extends ; we consider the space which is the union of the spaces and and group some points into equivalence classes such that every point in belongs to a separate class that also contains the preimage of the point; the union of all classes for all points in is a closed subspace of the quotient space being homeomorphic to ; we show the quotient space is normal and consider a retraction from onto the set of classes of points in ; now we can construct a continuous extension of , as we shall see.Construct the adjunction space as hinted: the quotient space obtained from by identifying each point with points in (for this we, first, need to specify the topology on : a set is open in iff is open in and is open in ). Let be the quotient map. Let and denote elements of as follows: where and where (if then contains only one element).First, we show that is normal. Let and be closed in . Let and . are closed in ( itself is closed as it contains all elements from and , both closed in ), therefore, are closed in and we can separate them by a continuous function (Urysohn lemma). Now, is continuous on and . We can extend it onto : . It is still continuous: it is continuous on and (the pasting lemma?). Now we can extend it onto (Tietze theorem). Note that the extended is constant on for all . Therefore, it induces a continuous function on (Section 22) such that it separates and . Hence, is normal.Now, we show that is homeomorphic to a closed subset of , namely, to the set . Indeed, is continuous and bijective. It maps closed to which is the image of a closed saturated subset of under the quotient map ( is closed in which is closed in ).Finally, since is a closed subset of the normal space homeomorphic to , and is an absolute retract, there is a retraction such that for every : . Let . is continuous, and maps to . For every : . Therefore, extends .