« Section 35*: Problem 5 Solution

Section 35*: Problem 7 Solution »

Section 35*: Problem 6 Solution

Working problems is a crucial part of learning mathematics. No one can learn topology merely by poring over the definitions, theorems, and examples that are worked out in the text. One must work part of it out for oneself. To provide that opportunity is the purpose of the exercises.
James R. Munkres
(a) is a homeomorphism, it can be extended to a continuous , then is a retraction.(b) So we assume is compact and Hausdorff, i.e. normal. If we show that is homeomorphic to a closed subspace of then, since is an absolute retract, is a retract of , and, similar to 5(a)(b), has the universal extension property. The Imbedding theorem provides a way to construct which is an imbedding. For each we define that equals 1 at and vanishes outside of . If is not in the image, then for every there is some such that . Choose a disjoint neighborhoods for and for . The preimages of cover which is compact, there is a finite subcovering. The corresponding finite intersection of is a neighborhood of disjoint from the image. (In other words, the continuous image of a compact is compact and closed in a Hausdorff space.)